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We present in this thesis theoretical investigation of quantum spin systems with competing interactions, quantum
phase transitions in magnetic system and various problems concerned with and without frustrated magnetism,
employing the coupled cluster method (CCM) for high orders of approximation, exact diagonalization (ED),
and variational mean-field approach (MFA). In particular, we discuss the ground-state properties of different
quantum spin models at zero temperature. In Chap. 3 we investigate the ground-state order-disorder transition
for the square lattice spin-1/2 XXZ model with two different nearest-neighbor couplings J and J ′ using the
CCM, ED and MFA. We study the influence of the anisotropy parameter ∆ and spin quantum number s on
this phase transition. We present evidence that the critical value J ′

c increases with growing ∆ and s according
to J ′

c(∆) ∝ α∆ (∆ ≥ 1) with α ∼ 2.3 . . . 3.0 and J ′
c ∝ s(s + 1), i.e. the transition disappears in the Ising

limit ∆ → ∞ and in the limit s → ∞. In Chap. 4 we study the ground state and the magnetization process
of the spin-1/2 two-dimensional Shastry-Sutherland antiferromagnet. For the critical point Jc

2/J1 where the
semi-classical Néel order disappears we obtain a significantly lower value than Jd

2 /J1, namely, Jc
2/J1 in the

range [1.14, 1.39]. We therefore conclude that an intermediate phase exists between the Néel and the dimer
phases. In Chap. 5 we present a method for the direct calculation of the spin stiffness by means of the CCM.
For the spin-half Heisenberg antiferromagnet on the square, the triangular and the cubic lattices we calculate
the stiffness in high orders of approximation. For the square and the cubic lattices our results are in very good
agreement with the best results available in the literature. For the triangular lattice our result is more precise
than any other result obtained so far by other approximate method. In Chap. 6 we investigate the phase diagram
of the frustrated Heisenberg antiferromagnet, the J1–J2 model, in two dimensions. We have found that the
quantum critical points for both the Néel and collinear order are Jc1

2 ≈ 0.44 . . . 0.45J1 and Jc2
2 ≈ 0.58 . . . 0.59J1

respectively, which are in good agreement with the results obtained by other approximations. We use the
CCM and ED to analyse the generalized susceptibilities. We find that the phase transition from the Néel to the
paramagnetic state at Jc1

2 is second order. In Chap. 7 we also discuss the influence of interlayer coupling (J⊥) on
the quantum paramagnetic ground-state phase. We demonstrate that increasing the interlayer coupling J⊥ > 0
the parameter region of this phase decreases, and finally the quantum paramagnetic phase disappears for quite
small J⊥ ∼ 0.2 − 0.3J1. In Chap. 8 we use the CCM to investigate the GS phase diagram of the 2D J1–J ′

1–J2

spin-1/2 and spin-1 Heisenberg model, where the nearest-neighbour bonds have different strengths J1 and J ′
1

in, say, the x (intrachain) and y (interchain) directions respectively. In particular, we study the effect of the
coupling J ′

1 on the Néel and stripe states. We found that for the spin-1/2 case there exists a quantum triple point
(QTP) below which there is a second-order phase transition between the quasiclassical Néel and stripe-ordered
phase with magnetic LRO, whereas only above this point are these two phases separated by the intermediate
magnetically disordered phase seen in the pure spin-1/2 J1–J2 model (J ′

1 = J1). The QTP was found to occur at
J ′

1/J1 ≈ 0.60±0.03, J2/J1 ≈ 0.33±0.02. By contrast with the s = 1/2 case, we found for the spin-1 no evidence
for a magnetically disordered state between the Néel and stripe states. However, for the s = 1 case we found
instead strong evidence for the QTP at J ′

1/J1 = 0.66± 0.03, J2/J1 = 0.35± 0.02, where a line of second-order
phase transitions between the quasiclassical Néel and columnar stripe-ordered phases (for J ′

1/J1 . 0.66) meets
a line of first-order phase transitions between the same two phases (for J ′

1/J1 & 0.66). In Chap. 9 we discuss
the influence of an exchange anisotropy ∆ on the zero-temperature phase transition of the spin-1/2 and spin-1
frustrated J1–J2 XXZ antiferromagnet on the square lattice. We find for spin-1/2 case strong evidence for two
QTP’s at (∆c = −0.10± 0.15, Jc

2/J1 = 0.505± 0.015) and (∆c = 2.05± 0.15, Jc
2/J1 = 0.530± 0.015), between

which an intermediate magnetically-disordered phase emerges to separate the quasiclassical Néel and stripe
collinear phases. Above the upper QTP (∆ & 2.0) we find a direct first-order phase transition between the Néel
and stripe phases, exactly as for the classical case. The z-aligned and xy-planar-aligned phases meet precisely at
∆ = 1, also as for the classical case. For all values of the anisotropy parameter between those of the two QTP’s
there exists a narrow range of values of J2/J1, αc1(∆) < J2/J1 < αc2(∆), centered near the point of maximum
classical frustration, J2/J1 = 1

2 , for which the intermediate phase exists. This range is widest precisely at the
isotropic point, ∆ = 1, where αc1(1) = 0.44± 0.01 and αc2(1) = 0.59± 0.01. The two QTP’s are characterized
by values ∆ = ∆c at which αc1(∆c) = αc2(∆c). For spin-1 we predict no intermediate disordered phase between
the Néel and collinear stripe phases, for any value of the frustration J2/J1, for either the z-aligned (∆ > 1) or
xy-planar-aligned (0 ≤ ∆ < 1) states. The quantum phase transition is determined to be first-order for all values
of J2/J1 and ∆. The position of the phase boundary Jc

2(∆) is determined accurately. It is observed to deviate
most from its classical position Jc

2 = 1
2 (for all values of ∆ > 0) at the Heisenberg isotropic point (∆ = 1),

where Jc
2(1) = 0.55± 0.01. By contrast, at the XY isotropic point (∆ = 0), we find Jc

2(0) = 0.50± 0.01. In the
Ising limit (∆→∞) Jc

2 → 0.5 as expected.


