A.15 Quadratische Gleichung. Wie lassen sich mit Zirkel und Lineal die Wurzeln der quadratischen Gleichung

$$x^2 \pm px \pm q = 0$$
 mit $x > 0$

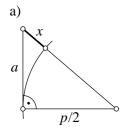
konstruieren, wenn p>0 eine gegebene Länge und q>0 ein gegebener Flächeninhalt (etwa durch die Kantenlänge $a\equiv\sqrt{q}$ eines Quadrates) ist?

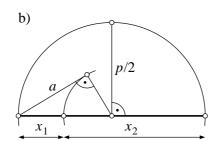
A.15 Wir haben bezüglich des Vorzeichens des linearen und absoluten Terms wegen x > 0 folgende drei Fälle zu unterscheiden (mit der Abkürzung $a \equiv \sqrt{q}$):

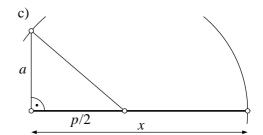
Fall 1:
$$x^2 + px - q = 0$$
 mit der Lösung $x = -\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + a^2}$,

Fall 2:
$$x^2 - px + q = 0$$
 mit den Lösungen $x_{1,2} = \frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - a^2}, \frac{p}{2} > a,$

Fall 3:
$$x^2 - px - q = 0$$
 mit der Lösung $x = \frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + a^2}$.







Durch die Struktur der Wurzeln ist die Konstruktionside
e bereits erkennbar: Wir benutzen natürlich den Satz des Pythagoras. Im Fall 1 zeichnen wir ein rechtwinkliges Dreieck mit den Katheten $\frac{1}{2}p$ und a und vermindern die Hypotenuse um $\frac{1}{2}p$ (Bild a). Im Fall 2 wird ein rechtwinkliges Dreieck aus der Hypotenuse $\frac{1}{2}p$ und einer Kathete a konstruiert (Bild b). Die Länge der anderen Kathete wird dann einmal zu $\frac{1}{2}p$ addiert bzw. einmal von $\frac{1}{2}p$ subtrahiert. Der Fall 3 ist dem ersten ähnlich; die Hypotenuse wird hier um $\frac{1}{2}p$ verlängert (Bild c).