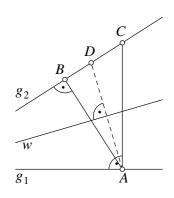
A.61 Von einem Winkel sind Teile beider Schenkel gegeben; sein Scheitel sei nicht zugänglich. Gesucht ist die Winkelhalbierende.

[A.61] (Bild) Mit g_1 und g_2 seien diejenigen Geraden bezeichnet, auf denen die beiden Teile der Schenkel des Winkels liegen; der von ihnen eingeschlossene Winkel sei α .



Konstruktion: Wir legen einen beliebigen Punkt A auf g_1 fest, fällen das Lot auf g_2 (Lotfußpunkt B) und errichten die Senkrechte zu g_1 in A; diese möge g_2 im Punkt C schneiden. Bringen wir die Halbierende des Winkels $\angle BAC$ mit g_2 zum Schnitt, erhalten wir Punkt D. Die Mittelsenkrechte von AD ist dann die gesuchte Winkelhalbierende w.

Beweis: Die Dreiecke ABO und ACO sind rechtwinklige Dreiecke (mit O als Scheitel des Winkels). Demzufolge ist $\angle BAO = \angle ACO = 90^{\circ} - \alpha$ und daher $\angle BAC = \alpha$. Nach Konstruktion beträgt der Winkel $\angle DAB = \frac{1}{2}\alpha$, somit ist $\angle DAO = 90^{\circ} - \frac{1}{2}\alpha$; wegen der Innenwinkelsumme im $\triangle AOD$ gilt ebenfalls $\angle ADO = 90^{\circ} - \frac{1}{2}\alpha$. $\triangle AOD$ hat

also gleiche Basiswinkel bezüglich der Seite AD und ist demnach gleichschenklig. Die Mittelsenkrechte von AD in diesem gleichschenkligen Dreieck ist gleichzeitig Winkelhalbierende von $\angle AOD$ und somit diejenige von g_1 und g_2 . \square