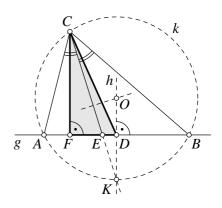
$\fbox{{\sf B.15}}$ Es ist ein Dreieck aus $h_c,\,w_c$ und m_c zu konstruieren.

B.15] Analysis: (Bild) $\triangle ABC$ sei das gesuchte Dreieck, $CD = m_c$ die Seitenhalbierende, $CE = w_c$ die Winkelhalbierende und $CF = h_c$ die Höhe, wobei letztere senkrecht auf der Geraden g(A, B) steht. Ferner schneide die Mittelsenkrechte von AB die Verlängerung der Winkelhalbierenden CE in einem Punkt K, der auf dem Umkreis k von $\triangle ABC$ liegt (vgl. Aufgabe D.3).

Konstruktion: Vom rechtwinkligen Hilfsdreieck CFD sind die Kathete h_c und die Hypotenuse m_c gegeben. Es läßt sich also aus den gegebenen Stücken unmittelbar nach Kongruenzsatz SSW konstruieren. Den Punkt E finden wir als Schnittpunkt eines Kreises mit dem Radius w_c um C mit der Geraden g, die bereits durch F und D bestimmt ist. Nun ergibt sich der



Punkt K als Schnittpunkt der in D senkrecht zu g errichteten Geraden h mit der Verlängerung von CE über E hinaus. Der Mittelpunkt O des Umkreises muß nun seinerseits auf der Geraden h (die zugleich Mittelsenkrechte der noch unbekannten Seite AB ist) und auf der Mittelsenkrechten der Sehne CK liegen; er ist somit ihr gemeinsamer Schnittpunkt. Die beiden Eckpunkte A und B erhalten wir schließlich als Schnittpunkte von g mit dem Umkreis O_C .

Bemerkung: Im allgemeinen gibt es noch einen zweiten Schnittpunkt E', der von C den Abstand w_c hat. Dieser liegt jedoch nicht zwischen dem Höhenfußpunkt F und der Seitenmitte D und führt somit nicht zum geforderten Dreieck.