instance | N | length | width | ratio | density | contacts | loose | reference |
---|---|---|---|---|---|---|---|---|
SY1 | 30 | 17.039663 | 9.5 | 1.793649 | 0.853892056372 | 41 | 10 | [9] |
SY2 | 20 | 14.397059 | 8.5 | 1.693772 | 0.844619731312 | 27 | 7 | [9] |
SY3 | 25 | 14.326620 | 9.0 | 1.591847 | 0.853909681827 | 41 | 5 | [10] |
SY4 | 35 | 23.285708 | 11.0 | 2.116883 | 0.854915094732 | 59 | 6 | [7] |
SY5 | 100 | 35.722300 | 15.0 | 2.381487 | 0.875706296924 | 174 | 13 | [10] |
SY6 | 100 | 36.182710 | 19.0 | 1.904353 | 0.878442877222 | 151 | 25 | [10] |
SY12 | 50 | 29.583500 | 9.5 | 3.114053 | 0.859603050638 | 0 | 50 | [9] |
SY13 | 55 | 30.353400 | 9.5 | 3.195095 | 0.861182691569 | 89 | 11 | [10] |
SY14 | 65 | 37.554743 | 11.0 | 3.414068 | 0.864690792376 | 111 | 10 | [7] |
SY23 | 45 | 27.573166 | 9.0 | 3.063685 | 0.860188006756 | 61 | 15 | [8] |
SY24 | 55 | 34.010900 | 11.0 | 3.091900 | 0.861599067978 | 78 | 16 | [10] |
SY34 | 60 | 34.543629 | 11.0 | 3.140330 | 0.866053746510 | 83 | 18 | [10] |
SY56 | 200 | 63.915100 | 19.0 | 3.363953 | 0.883687288144 | 325 | 38 | [10] |
SY123 | 75 | 42.847130 | 9.5 | 4.510224 | 0.863997825463 | 119 | 16 | [10] |
SY124 | 85 | 48.441309 | 11.0 | 4.403755 | 0.864337500810 | 122 | 23 | [9] |
SY134 | 90 | 49.046868 | 11.0 | 4.458806 | 0.866162931849 | 130 | 25 | [9] |
SY234 | 80 | 45.344850 | 11.0 | 4.122259 | 0.866979108695 | 127 | 17 | [10] |
SY1234 | 110 | 59.620120 | 11.0 | 5.420011 | 0.870159058544 | 169 | 26 | [10] |
SY36 | 125 | 42.598440 | 19.0 | 2.242023 | 0.882249966609 | 196 | 27 | [10] |
SY125 | 150 | 40.234200 | 20.0 | 2.011710 | 0.883352220303 | 270 | 15 | [10] |
SY1236 | 175 | 54.135040 | 20.0 | 2.706752 | 0.882645194371 | 304 | 22 | [10] |
SY356 | 225 | 70.293370 | 19.0 | 3.699651 | 0.885984875770 | 376 | 36 | [10] |
SY1256 | 250 | 78.134710 | 19.0 | 4.112353 | 0.885610995364 | 429 | 35 | [10] |
SY12356 | 275 | 72.910410 | 22.0 | 3.314110 | 0.888318145506 | 502 | 22 | [10] |
SY565 | 300 | 69.452780 | 25.0 | 2.778111 | 0.888329381641 | 541 | 29 | [10] |
KBG1 | 25 | 33.323652 | 10.0 | 3.332365 | 0.836832107698 | 43 | 4 | [9] |
KBG2 | 25 | 21.940872 | 10.0 | 2.194087 | 0.789208970574 | 45 | 3 | [9] |
KBG3 | 25 | 27.281212 | 10.0 | 2.728121 | 0.843078646455 | 43 | 4 | [9] |
KBG4 | 25 | 13.275753 | 10.0 | 1.327575 | 0.845443006720 | 43 | 4 | [9] |
KBG5 | 25 | 6.493628 | 10.0 | 0.649363 | 0.832077667878 | 47 | 1 | [9] |
KBG6 | 25 | 25.192679 | 10.0 | 2.519268 | 0.836835709790 | 29 | 11 | [9] |
KBG7 | 25 | 4.990629 | 10.0 | 0.499063 | 0.847383147565 | 43 | 4 | [9] |
KBG8 | 25 | 3.705960 | 10.0 | 0.370596 | 0.838759826207 | 41 | 5 | [9] |
KBG9 | 25 | 36.164433 | 10.0 | 3.616443 | 0.822248306086 | 41 | 5 | [9] |
KBG10 | 25 | 20.694451 | 10.0 | 2.069445 | 0.803722211825 | 43 | 4 | [9] |
KBG11 | 25 | 26.733582 | 10.0 | 2.673358 | 0.837339828192 | 47 | 2 | [9] |
KBG12 | 25 | 11.083842 | 10.0 | 1.108384 | 0.846936436031 | 39 | 6 | [9] |
KBG13 | 25 | 6.006472 | 10.0 | 0.600647 | 0.831273702409 | 43 | 4 | [9] |
KBG14 | 25 | 21.495996 | 10.0 | 2.149600 | 0.829157166398 | 24 | 13 | [9] |
KBG15 | 25 | 9.170743 | 10.0 | 0.917074 | 0.852194630858 | 35 | 8 | [9] |
KBG16 | 25 | 3.638368 | 10.0 | 0.363837 | 0.837086682999 | 33 | 9 | [9] |
KBG17 | 25 | 44.502437 | 10.0 | 4.450244 | 0.773066093935 | 3 | 23 | [9] |
KBG18 | 25 | 20.143491 | 10.0 | 2.014349 | 0.800227285398 | 47 | 2 | [9] |
KBG19 | 25 | 23.615638 | 10.0 | 2.361564 | 0.818705757960 | 31 | 10 | [9] |
KBG20 | 25 | 12.977752 | 10.0 | 1.297775 | 0.831574826295 | 45 | 3 | [9] |
KBG21 | 25 | 5.029868 | 10.0 | 0.502987 | 0.816845334390 | 43 | 4 | [9] |
KBG22 | 25 | 31.603345 | 10.0 | 3.160334 | 0.814520507211 | 41 | 5 | [9] |
KBG23 | 25 | 8.520484 | 10.0 | 0.852048 | 0.834730644085 | 45 | 3 | [9] |
KBG24 | 25 | 2.255643 | 10.0 | 0.225564 | 0.798806822085 | 45 | 3 | [9] |
KBG25 | 25 | 28.870452 | 10.0 | 2.887045 | 0.794770739569 | 42 | 3 | [10] |
KBG26 | 25 | 26.578405 | 10.0 | 2.657840 | 0.754995294322 | 51 | 0 | [9] |
KBG27 | 25 | 12.945579 | 10.0 | 1.294558 | 0.784053577062 | 47 | 2 | [9] |
KBG28 | 25 | 13.041602 | 10.0 | 1.304160 | 0.794075053526 | 45 | 3 | [9] |
KBG29 | 25 | 5.195416 | 10.0 | 0.519542 | 0.789450151961 | 47 | 2 | [9] |
KBG30 | 25 | 4.338971 | 10.0 | 0.433897 | 0.792739937375 | 43 | 4 | [9] |
KBG31 | 25 | 18.965489 | 10.0 | 1.896549 | 0.792529804167 | 43 | 4 | [9] |
KBG32 | 25 | 1.421286 | 10.0 | 0.142129 | 0.781505096566 | 56 | 0 | [9] |
KBG33 | 50 | 72.840349 | 10.0 | 7.284035 | 0.823610488491 | 89 | 6 | [9] |
KBG34 | 50 | 40.833876 | 10.0 | 4.083388 | 0.814141696273 | 93 | 4 | [10] |
KBG35 | 50 | 53.231191 | 10.0 | 5.323119 | 0.850211173812 | 79 | 11 | [10] |
KBG36 | 50 | 25.881809 | 10.0 | 2.588181 | 0.858906742966 | 77 | 12 | [10] |
KBG37 | 50 | 12.573884 | 10.0 | 1.257388 | 0.850500991710 | 85 | 8 | [9] |
KBG38 | 50 | 52.416790 | 10.0 | 5.241679 | 0.851559356075 | 79 | 11 | [10] |
KBG39 | 50 | 19.484262 | 10.0 | 1.948426 | 0.868620819785 | 81 | 10 | [10] |
KBG40 | 50 | 8.349900 | 10.0 | 0.834990 | 0.865363265726 | 83 | 9 | [10] |
KBG41 | 50 | 74.859650 | 10.0 | 7.485965 | 0.817178662475 | 93 | 4 | [9] |
KBG42 | 50 | 41.545007 | 10.0 | 4.154501 | 0.809587145802 | 92 | 3 | [9] |
KBG43 | 50 | 47.772390 | 10.0 | 4.777239 | 0.849870998188 | 79 | 11 | [10] |
KBG44 | 50 | 30.179100 | 10.0 | 3.017910 | 0.854609104680 | 83 | 9 | [10] |
KBG45 | 50 | 11.654510 | 10.0 | 1.165451 | 0.847547829611 | 97 | 2 | [10] |
KBG46 | 50 | 39.178703 | 10.0 | 3.917870 | 0.854764179167 | 85 | 8 | [10] |
KBG47 | 50 | 22.227784 | 10.0 | 2.222778 | 0.855850381701 | 77 | 12 | [10] |
KBG48 | 50 | 8.291032 | 10.0 | 0.829103 | 0.860117667480 | 81 | 10 | [9] |
KBG49 | 50 | 62.730663 | 10.0 | 6.273066 | 0.827466785075 | 83 | 9 | [9] |
KBG50 | 50 | 39.393632 | 10.0 | 3.939363 | 0.821849215000 | 89 | 6 | [9] |
KBG51 | 50 | 47.483410 | 10.0 | 4.748341 | 0.843957216858 | 71 | 15 | [10] |
KBG52 | 50 | 24.208974 | 10.0 | 2.420897 | 0.845145225300 | 81 | 8 | [9] |
KBG53 | 50 | 12.250765 | 10.0 | 1.225076 | 0.847691115305 | 89 | 6 | [9] |
KBG54 | 50 | 48.007131 | 10.0 | 4.800713 | 0.844408674992 | 58 | 21 | [9] |
KBG55 | 50 | 12.193825 | 10.0 | 1.219383 | 0.855287375408 | 77 | 12 | [9] |
KBG56 | 50 | 7.821252 | 10.0 | 0.782125 | 0.853075087442 | 87 | 7 | [9] |
KBG57 | 50 | 99.631481 | 10.0 | 9.963148 | 0.778107500259 | 89 | 6 | [9] |
KBG58 | 50 | 44.075363 | 10.0 | 4.407536 | 0.791073395770 | 93 | 4 | [9] |
KBG59 | 50 | 40.246630 | 10.0 | 4.024663 | 0.843642150163 | 84 | 8 | [9] |
KBG60 | 50 | 25.560381 | 10.0 | 2.556038 | 0.843036935643 | 86 | 7 | [9] |
KBG61 | 50 | 10.305060 | 10.0 | 1.030506 | 0.836809864918 | 93 | 4 | [10] |
KBG62 | 50 | 55.721872 | 10.0 | 5.572187 | 0.792663403840 | 53 | 24 | [9] |
KBG63 | 50 | 22.274092 | 10.0 | 2.227409 | 0.845975826231 | 87 | 7 | [10] |
KBG64 | 50 | 10.736768 | 10.0 | 1.073677 | 0.843528119020 | 85 | 8 | [9] |
KBG65 | 75 | 96.048486 | 10.0 | 9.604849 | 0.838115891282 | 117 | 17 | [9] |
KBG66 | 75 | 61.686433 | 10.0 | 6.168643 | 0.815474394125 | 131 | 10 | [9] |
KBG67 | 75 | 74.396790 | 10.0 | 7.439679 | 0.854973134878 | 106 | 22 | [10] |
KBG68 | 75 | 38.937510 | 10.0 | 3.893751 | 0.861460179180 | 139 | 6 | [10] |
KBG69 | 75 | 17.341530 | 10.0 | 1.734153 | 0.856245846817 | 140 | 5 | [10] |
KBG70 | 75 | 66.331820 | 10.0 | 6.633182 | 0.861122316585 | 113 | 19 | [10] |
KBG71 | 75 | 33.337143 | 10.0 | 3.333714 | 0.868055266625 | 119 | 16 | [10] |
KBG72 | 75 | 12.760900 | 10.0 | 1.276090 | 0.870196733874 | 129 | 11 | [10] |
KBG73 | 75 | 92.700487 | 10.0 | 9.270049 | 0.840326651363 | 129 | 11 | [9] |
KBG74 | 75 | 60.393365 | 10.0 | 6.039337 | 0.821474743309 | 135 | 7 | [9] |
KBG75 | 75 | 80.659970 | 10.0 | 8.065997 | 0.848025597849 | 113 | 19 | [10] |
KBG76 | 75 | 42.502300 | 10.0 | 4.250230 | 0.859099193216 | 137 | 7 | [10] |
KBG77 | 75 | 18.422180 | 10.0 | 1.842218 | 0.856652127043 | 131 | 10 | [10] |
KBG78 | 75 | 61.230730 | 10.0 | 6.123073 | 0.863919831506 | 94 | 28 | [10] |
KBG79 | 75 | 25.367582 | 10.0 | 2.536758 | 0.870929294448 | 110 | 20 | [10] |
KBG80 | 75 | 13.154030 | 10.0 | 1.315403 | 0.865801510058 | 120 | 15 | [10] |
KBG81 | 75 | 93.734637 | 10.0 | 9.373464 | 0.839683672520 | 117 | 17 | [9] |
KBG82 | 75 | 63.310296 | 10.0 | 6.331030 | 0.809760632203 | 137 | 6 | [9] |
KBG83 | 75 | 79.491410 | 10.0 | 7.949141 | 0.833177058608 | 90 | 30 | [10] |
KBG84 | 75 | 49.168482 | 10.0 | 4.916848 | 0.851405001770 | 133 | 9 | [9] |
KBG85 | 75 | 16.928140 | 10.0 | 1.692814 | 0.849538408144 | 141 | 5 | [10] |
KBG86 | 75 | 70.023340 | 10.0 | 7.002334 | 0.843816415677 | 81 | 35 | [10] |
KBG87 | 75 | 31.355060 | 10.0 | 3.135506 | 0.866618798657 | 112 | 19 | [10] |
KBG88 | 75 | 11.090300 | 10.0 | 1.109030 | 0.859108177672 | 123 | 14 | [10] |
KBG89 | 75 | 96.432903 | 10.0 | 9.643290 | 0.833202856367 | 117 | 17 | [9] |
KBG90 | 75 | 54.174851 | 10.0 | 5.417485 | 0.839169938458 | 134 | 7 | [9] |
KBG91 | 75 | 83.418750 | 10.0 | 8.341875 | 0.828642500163 | 115 | 18 | [10] |
KBG92 | 75 | 45.587587 | 10.0 | 4.558759 | 0.841488635734 | 139 | 6 | [9] |
KBG93 | 75 | 18.382540 | 10.0 | 1.838254 | 0.844004369936 | 128 | 11 | [10] |
KBG94 | 75 | 105.241974 | 10.0 | 10.524197 | 0.815794223828 | 136 | 7 | [9] |
KBG95 | 75 | 41.789987 | 10.0 | 4.178999 | 0.844727615712 | 104 | 23 | [10] |
KBG96 | 75 | 9.541484 | 10.0 | 0.954148 | 0.856004484997 | 123 | 14 | [10] |
KBG97 | 100 | 136.334680 | 10.0 | 13.633468 | 0.830733123546 | 171 | 15 | [10] |
KBG98 | 100 | 80.398310 | 10.0 | 8.039831 | 0.823263831067 | 180 | 10 | [10] |
KBG99 | 100 | 109.530880 | 10.0 | 10.953088 | 0.853247173360 | 149 | 26 | [10] |
KBG100 | 100 | 53.541130 | 10.0 | 5.354113 | 0.864067422834 | 159 | 21 | [10] |
KBG101 | 100 | 24.609510 | 10.0 | 2.460951 | 0.857000397547 | 179 | 11 | [10] |
KBG102 | 100 | 96.311020 | 10.0 | 9.631102 | 0.862646496759 | 131 | 34 | [10] |
KBG103 | 100 | 41.667050 | 10.0 | 4.166705 | 0.873768652378 | 172 | 14 | [10] |
KBG104 | 100 | 17.722912 | 10.0 | 1.772291 | 0.875978230169 | 177 | 12 | [10] |
KBG105 | 100 | 143.457324 | 10.0 | 14.345732 | 0.821699378985 | 176 | 10 | [9] |
KBG106 | 100 | 79.786590 | 10.0 | 7.978659 | 0.824330289747 | 173 | 12 | [10] |
KBG107 | 100 | 103.475091 | 10.0 | 10.347509 | 0.854108966505 | 166 | 17 | [10] |
KBG108 | 100 | 51.930270 | 10.0 | 5.193027 | 0.861562577373 | 170 | 15 | [10] |
KBG109 | 100 | 24.630520 | 10.0 | 2.463052 | 0.854169680564 | 188 | 6 | [10] |
KBG110 | 100 | 81.765690 | 10.0 | 8.176569 | 0.865428548677 | 101 | 50 | [10] |
KBG111 | 100 | 36.668656 | 10.0 | 3.666866 | 0.874405434917 | 159 | 21 | [10] |
KBG112 | 100 | 18.293880 | 10.0 | 1.829388 | 0.872045741064 | 176 | 12 | [10] |
KBG113 | 100 | 158.244480 | 10.0 | 15.824448 | 0.800848825672 | 167 | 16 | [10] |
KBG114 | 100 | 83.930680 | 10.0 | 8.393068 | 0.817315764790 | 180 | 10 | [10] |
KBG115 | 100 | 79.858010 | 10.0 | 7.985801 | 0.851632718967 | 159 | 21 | [10] |
KBG116 | 100 | 46.510580 | 10.0 | 4.651058 | 0.858440920502 | 179 | 11 | [10] |
KBG117 | 100 | 25.238600 | 10.0 | 2.523860 | 0.856896701432 | 178 | 11 | [10] |
KBG118 | 100 | 99.987614 | 10.0 | 9.998761 | 0.849542974788 | 125 | 38 | [10] |
KBG119 | 100 | 44.024270 | 10.0 | 4.402427 | 0.858501850011 | 177 | 12 | [10] |
KBG120 | 100 | 16.368840 | 10.0 | 1.636884 | 0.866612083205 | 166 | 17 | [10] |
KBG121 | 100 | 105.173481 | 10.0 | 10.517348 | 0.832277493964 | 178 | 11 | [9] |
KBG122 | 100 | 75.374766 | 10.0 | 7.537477 | 0.825973191416 | 176 | 12 | [9] |
KBG123 | 100 | 96.619210 | 10.0 | 9.661921 | 0.844481527202 | 155 | 23 | [10] |
KBG124 | 100 | 55.715600 | 10.0 | 5.571560 | 0.849038135545 | 165 | 18 | [10] |
KBG125 | 100 | 25.155100 | 10.0 | 2.515510 | 0.855837606458 | 182 | 8 | [10] |
KBG126 | 100 | 57.076750 | 10.0 | 5.707675 | 0.870242512761 | 119 | 41 | [10] |
KBG127 | 100 | 60.550340 | 10.0 | 6.055034 | 0.850051463797 | 146 | 26 | [10] |
KBG128 | 100 | 21.255770 | 10.0 | 2.125577 | 0.858681102578 | 176 | 12 | [10] |
29-May-2012: | First presentation of the instances SY1, SY2, SY3, SY4, SY5, SY6, SY14 and SY23.
These are some of the famous benchmark instances by Stoyan and Yaskov, see [1] and [4]. Please note that the numbering of the circles doesn't correspond with the original numbering; the circles are numbered here always in ascending order by size. Thanks to Hakim Akeb who supports this work. The data from [6] can be found here. |
30-May-2012: | Zhanghua Fu sent me twelve new records for the remaining instances
SY1, SY3, SY12, SY13, SY24, SY34, SY56, SY123, SY124, SY134, SY234 and SY1234 [9].
|
30-May-2012: | There are lots of other challenging instances, KBG1–KBG128, with varying
aspect ratios by Kubach/Bortfeldt/Gehring [6] for which their solutions are shown here.
|
04-Jun-2012: | Since all original record packings consist only of rattlers it is clear that they may be compressed.
I have done this for the SY instances without changing the arrangement significantly. So the credits should remain to the authors.
A comparison of the previous/compressed packings can be viewed here.
|
21-Aug-2012: | Yu. Stoyan and G. Yaskov wrote an article [10] in which nearly all previous record
packings were beaten. Packomania now shows these new records. Additionally, they created seven new benchmark instances named
SY36, SY125, SY1236, SY356, SY1256, SY12356 and SY565 with more circles in the range N = 125–300.
|
25-Sep-2012: | One improvement for SY12 and a belated record for KBG110 by Yu. Stoyan and G. Yaskov [10].
|
25-Sep-2012: | 72(!) new improvements for KBG1–24, KBG26–33, KBG37, KBG40–42,
KBG44–45, KBG48–50, KBG52–62, KBG64–66, KBG72–74, KBG76, KBG81–82, KBG84–85,
KBG88–90, KBG92, KBG94, KBG100, KBG105 and KBG121–122 by Zhanghua Fu et al. [9].
|
27-Sep-2012: | Further improvements for SY1, SY2, SY124 and SY134 by Zhanghua Fu et al. [9].
|
01-Nov-2012: | Nine more records for KBG40, KBG44, KBG45, KBG61, KBG72, KBG76, KBG85, KBG88 and KBG100 by Yu. Stoyan and G. Yaskov [10]. |
[1] | Yu. G. Stoyan, G. N. Yaskov, Mathematical Model and Solution Method of Optimization Problem of Placement of Rectangles and Circles Taking into Account Special Constraints, Int. Trans. Opl Res. 5 (1998) 1, 45–57.
|
[2] | Mhand Hifi, Rym M'Hallah, A best-local position procedure-based heuristic for the two-dimensional layout problems, Studia Informatica Universalis 2 (2003) 1, 33–56.
|
[3] | Mhand Hifi, Rym M'Hallah, Approximate algorithms for constrained circular cutting problems, Computers & Operational Research 31 (2004) 5, 675–694.
|
[4] | Yu. G. Stoyan, G. Yas'kov, A mathematical model and a solution method for the problem of placing various-sized circles into a strip, European Journal of Operational Research 156 (2004) 3, 590–600.
|
[5] | WQ Huang, Y Li, H Akeb, CM Li, Greedy algorithms for packing unequal circles into a rectangular container, Journal of the Operational Research Society 56 (2005) 5, 539–548.
|
[6] | , Parallel greedy algorithms for packing unequal circles into a strip or a rectangle, Central European Journal of Operational Research 17 (2009) 4, 461–477.
|
[7] | , An Adaptive Look-Ahead Strategy-Based Algorithm for the Circular Open Dimension Problem, ADAPTIVE 2010: The Second International Conference on Adaptive and Self-Adaptive Systems and Applications (2010) 158–163.
|
[8] | , An augmented beam search-based algorithm for the circular open dimension problem, Computers & Industrial Engineering 61 (2011) 2, 373–381.
|
[9] | , Iterated tabu search for the circular open dimension problem, European Journal of Operational Research (to appear).
|
[10] | , Packing unequal circles into a strip of minimal length with a jump algorithm, Central European Journal of Operations Research (to appear) and private communication 2012. |