A, B, C, O | die drei Eckpunkte und der Umkreismittelpunkt (s. Bild 3) |
Ma, Mb, Mc, G | die drei Seitenmitten und der Schwerpunkt (s. Bild 1) |
Ha, Hb, Hc, H | die drei Höhenfußpunkte und der Höhenschnittpunkt (s. Bild 4) |
Ta, Tb, Tc, I | die drei Schnittpunkte der (inneren) Winkelhalbierenden mit den jeweils gegenüberliegenden Seiten und der Inkreismittelpunkt (s. Bild 5). |
Bild 3. | Bild 4. |
Bild 5. |
Fa, Fb, Fc | die drei weiteren Schnittpunkte der Höhen mit dem Umkreis (s. Bild 6) |
Ua, Ub, Uc | die drei weiteren Schnittpunkte der (inneren) Winkelhalbierenden mit dem Umkreis (s. Bild 7) |
Ia, Ib, Ic | die drei Ankreismittelpunkte (s. Bild 8). |
Bild 6. | Bild 7. |
Bild 8. |
1. | A, B, O | L | 36. | A, Mb, Tc | S | 71. | O, G, H | R | 106. | Ma, Hb, Tc | U | [2] | |||
2. | A, B, Ma | S | 37. | A, Mb, I | S | 72. | O, G, Ta | U | [2] | 107. | Ma, Hb, I | U | [2] | ||
3. | A, B, Mc | R | 38. | A, G, Ha | L | 73. | O, G, I | U | [2] | 108. | Ma, H, Ta | S | [20] | ||
4. | A, B, G | S | 39. | A, G, Hb | S | 74. | O, Ha, Hb | U | [2] | 109. | Ma, H, Tb | U | [8] | ||
5. | A, B, Ha | L | 40. | A, G, H | S | 75. | O, Ha, H | S | 110. | Ma, H, I | U | [8] | |||
6. | A, B, Hc | L | 41. | A, G, Ta | S | 76. | O, Ha, Ta | S | 111. | Ma, Ta, Tb | U | [8] | |||
7. | A, B, H | S | 42. | A, G, Tb | U | [2] | 77. | O, Ha, Tb | U | [20] | 112. | Ma, Ta, I | S | ||
8. | A, B, Ta | S | 43. | A, G, I | S | 78. | O, Ha, I | U | [20] | 113. | Ma, Tb, Tc | U | [20] | ||
9. | A, B, Tc | L | 44. | A, Ha, Hb | S | 79. | O, H, Ta | U | [2] | 114. | Ma, Tb, I | U | [2] | ||
10. | A, B, I | S | 45. | A, Ha, H | L | 80. | O, H, I | U | [2] | 115. | G, Ha, Hb | U | [2] | ||
11. | A, O, Ma | S | 46. | A, Ha, Ta | L | 81. | O, Ta, Tb | U | [20] | 116. | G, Ha, H | S | |||
12. | A, O, Mb | L | 47. | A, Ha, Tb | S | 82. | O, Ta, I | S | [2] | 117. | G, Ha, Ta | S | |||
13. | A, O, G | S | 48. | A, Ha, I | S | 83. | Ma, Mb, Mc | S | 118. | G, Ha, Tb | U | [20] | |||
14. | A, O, Ha | S | 49. | A, Hb, Hc | S | 84. | Ma, Mb, G | S | 119. | G, Ha, I | S | [20] | |||
15. | A, O, Hb | S | 50. | A, Hb, H | L | 85. | Ma, Mb, Ha | S | 120. | G, H, Ta | U | [2] | |||
16. | A, O, H | S | 51. | A, Hb, Ta | S | 86. | Ma, Mb, Hc | S | 121. | G, H, I | U | [2] | |||
17. | A, O, Ta | S | 52. | A, Hb, Tb | L | 87. | Ma, Mb, H | S | [2] | 122. | G, Ta, Tb | U | [20] | ||
18. | A, O, Tb | S | 53. | A, Hb, Tc | S | 88. | Ma, Mb, Ta | U | [2] | 123. | G, Ta, I | U | [20] | ||
19. | A, O, I | S | 54. | A, Hb, I | S | 89. | Ma, Mb, Tc | U | [2] | 124. | Ha, Hb, Hc | S | |||
20. | A, Ma, Mb | S | 55. | A, H, Ta | S | 90. | Ma, Mb, I | U | [8] | 125. | Ha, Hb, H | S | |||
21. | A, Ma, G | R | 56. | A, H, Tb | U | [2] | 91. | Ma, G, Ha | L | 126. | Ha, Hb, Ta | S | |||
22. | A, Ma, Ha | L | 57. | A, H, I | S | [2] | 92. | Ma, G, Hb | S | 127. | Ha, Hb, Tc | U | [20] | ||
23. | A, Ma, Hb | S | 58. | A, Ta, Tb | S | [2] | 93. | Ma, G, H | S | 128. | Ha, Hb, I | U | [20] | ||
24. | A, Ma, H | S | 59. | A, Ta, I | L | 94. | Ma, G, Ta | S | 129. | Ha, H, Ta | L | ||||
25. | A, Ma, Ta | S | 60. | A, Tb, Tc | S | 95. | Ma, G, Tb | U | [2] | 130. | Ha, H, Tb | U | [2] | ||
26. | A, Ma, Tb | U | [2] | 61. | A, Tb, I | S | 96. | Ma, G, I | S | [2] | 131. | Ha, H, I | S | [2] | |
27. | A, Ma, I | S | 62. | O, Ma, Mb | S | 97. | Ma, Ha, Hb | S | 132. | Ha, Ta, Tb | U | [20] | |||
28. | A, Mb, Mc | S | 63. | O, Ma, G | S | 98. | Ma, Ha, H | L | 133. | Ha, Ta, I | S | ||||
29. | A, Mb, G | S | 64. | O, Ma, Ha | L | 99. | Ma, Ha, Ta | L | 134. | Ha, Tb, Tc | U | [20] | |||
30. | A, Mb, Ha | L | 65. | O, Ma, Hb | S | 100. | Ma, Ha, Tb | U | [2] | 135. | Ha, Tb, I | U | [20] | ||
31. | A, Mb, Hb | L | 66. | O, Ma, H | S | 101. | Ma, Ha, I | S | 136. | H, Ta, Tb | U | [20] | |||
32. | A, Mb, Hc | L | 67. | O, Ma, Ta | L | 102. | Ma, Hb, Hc | L | 137. | H, Ta, I | U | [20] | |||
33. | A, Mb, H | S | 68. | O, Ma, Tb | U | [2] | 103. | Ma, Hb, H | S | 138. | Ta, Tb, Tc | U | [5,9] | ||
34. | A, Mb, Ta | S | 69. | O, Ma, I | S | 104. | Ma, Hb, Ta | S | 139. | Ta, Tb, I | S | ||||
35. | A, Mb, Tb | L | 70. | O, G, Ha | S | 105. | Ma, Hb, Tb | S |
31. Juli 2009 | Erstveröffentlichung dieser Seite, Anregungen und Kommentare sind willkommen. |
1. August 2009 | Diskussionsforum zu diesem Thema auf Matroids Matheplanet. |
2. August 2009 | Nr. 90, 109, 110 und 111 von owk als unlösbar bewiesen, siehe Diskussionsforum. |
3. August 2009 | Nr. 58 eingefügt (nach [4]). |
29. März 2015 | Neuorganisation und Update der Seite. |
[1] | William Wernick, "Triangle Constructions with Three Located Points", Mathematics Magazine 55, no. 4, September 1982, S. 227–230. |
[2] | Leroy F. Meyers, "Update on William Wernick's 'Triangle Constructions with Three Located Points'", Mathematics Magazine 69, no. 1, Februar 1996, S. 46–49. |
[3] | Eric Danneels, "A Simple Construction of a Triangle from its Centroid, Incenter, and a Vertex", Forum Geometricorum 5 (2005), S. 53–56. |
[4] | Harold Connelly, Nikolaos Derglades, and Jean-Pierre Ehrmann, "Construction of Triangle from a Vertex and the Feet of Two Angle Bisectors", Forum Geometricorum 7 (2007), S. 103–106. |
[5] | Paul Yiu, "Conic solution of a triangle from the feet of its angle bisectors", Journal for Geometry and Graphics 12 (2008), 171–182. |
[6] | Harold Connelly, "An Extension of Triangle Constructions from Located Points", Forum Geometricorum 9 (2009), S. 109–112. |
[7] | Harold Connelly, Beata Randrianantoanina, "An Angle Bisector Parallel Applied to Triangle Construction", Forum Geometricorum 9 (2009), S. 161–163. |
[8] | owk, Diskussionsforum auf Matroids Matheplanet, August 2009. |
[9] | Alexey V. Ustinov, "On the construction of a triangle from the feet of its angle bisectors", Forum Geometricorum 9 (2009), S. 279–280. |
[20] | Pascal Schreck, Pascal Mathis, "RC-constructibility of problems in Wernick's list", Proc. ADG 2014, 9–11 July 2014, University of Coimbra, Portugal. |